Radioactive Contamination:
The chief delayed effect is the creation of huge amounts of radioactive material with long lifetimes, ranging from days to a millennium. The primary source of these products is the debris left from fission reactions. A potentially significant secondary source is neutron capture by non-radioactive isotopes both within the bomb and in the outside environment. When atoms fission they can split in some 40 different ways, producing a mix of about 80 different isotopes. These isotopes vary widely in stability, some our completely stable while others undergo radioactive decay with half-lives of fractions of a second. The decaying isotopes may themselves form stable or unstable daughter isotopes. The mixture thus quickly becomes even more complex, some 300 different isotopes of 36 elements have been identified in fission products
These radioactive products are most hazardous when they settle to the ground as "fallout". The rate at which fallout settles depends very strongly on the altitude at which the explosion occurs, and to a lesser extent on the size of the explosion. If the explosion is a true air-burst (the "fireball" does not touch the ground), when the vaporized radioactive products cool enough to condense and solidify, they will do so to form microscopic particles. These particles are mostly lifted high into the atmosphere by the rising fireball, although significant amounts are deposited in the lower atmosphere by mixing that occurs due to convective circulation within the fireball. The larger the explosion, the higher and faster the fallout is lofted, and the smaller the proportion that is deposited in the lower atmosphere. Explosions close to the ground that do not touch it can still generate substantial hazards immediately below the burst point by neutron-activation. Neutrons absorbed by the soil can generate considerable radiation for several hours.
Harm to the Ozone Layer:
The high temperatures of the nuclear fireball, followed by rapid expansion and cooling, cause large amounts of nitrogen oxides to form from the oxygen and nitrogen in the atmosphere (very similar to what happens in combustion engines). Each megaton of yield will produce some 5000 tons of nitrogen oxides. The rising fireball of a high kiloton or megaton range warhead will carry these nitric oxides well up into the stratosphere, where they can reach the ozone layer. A series of large atmospheric explosions could significantly deplete the ozone layer. The high yield tests in the fifties and sixties probably did cause significant depletion, but the ozone measurements made at the time were too limited to pick up the expected changes out of natural variations.
Nuclear Winter:
The famous TTAPS (Turco, Toon, Ackerman, Pollack, and Sagan) proposal regarding a potential "nuclear winter" is another possible occurrence. This effect is caused by the absorption of sunlight when large amounts of soot are injected into the atmosphere by the widespread burning of cities and petroleum stocks destroyed in a nuclear attack. Similar events have been observed naturally when large volcanic eruptions have injected large amounts of dust into the atmosphere. Soot is far more efficient in absorbing light than volcanic dust, and soot particles are small and hydrophobic and thus tend not to settle or wash out as easily. Although the initial TTAPS study was met with significant skepticism and criticism, later and more sophisticated work by researchers around the world have confirmed it in all essential details. These studies predict that the amount of soot that would be produced by burning most of the major cities in the US and USSR would severly disrupt climate on a world-wide basis. The major effect would be a rapid and drastic reduction in global temperature, especially over land. All recent studies indicate that if large scale nucelar attack occur against urban or petrochemical targets, average temperature reductions of at least 10 degrees C would occur lasting many months. This level of cooling far exceeds any that has been observed in recorded history, and is comparable to that of a full scale ice age. In areas downwind from attack sites, the cooling can reach 35 degrees C.
Smaller attacks would create reduced effects of course. But it has been pointed out that most of the world's food crops are subtropical plants that would have dramatic drops in productivity if an average temperature drop of even one degree were to occur for even a short time during the growing season. Since the world maintains a stored food supply equal to only a few months of consumption, a war during the Northern Hemisphere spring or summer could still cause deadly starvation around the globe from this effect alone even if it only produced a mild "nuclear autumn".
Electromagnetic Effects:
The high temperatures and energetic radiation produced by nuclear explosions also produce large amounts of ionized (electrically charged) matter which is present immediately after the explosion. Under the right conditions, intense currents and electromagnetic fields can be produced, generically called EMP (Electromagnetic Pulse), that are felt at long distances. Living organisms are impervious to these effects, but electrical and electronic equipment can be temporarily or permanently disabled by them. Ionized gases can also block short wavelength radio and radar signals for extended periods. A separate effect is the ability of the ionized fireball to block radio and radar signals. Like EMP, this effect becomes important with high altitude bursts. Fireball blackout can cause radar to be blocked for tens of seconds to minutes over an area tens of kilometers across. High frequency radio can be disrupted over hundreds to thousands of kilometers for minutes to hours depending on exact conditions. Military equipment is generally designed to be resistant to EMP, but realistic tests are very difficult to perform and EMP protection rests on attention to detail. Minor changes in design, incorrect maintenance procedures, poorly fitting parts, loose debris, moisture, and ordinary dirt can all cause elaborate EMP protections to be totally circumvented. It can be expected that a single high yield, high altitude explosion over an industrialized area would cause massive disruption for an indeterminable period, and would cause huge economic damages.
No comments:
Post a Comment